4 minute read

Binary GCD also known as Stein’s Algorithm is an algorithm that computes the greatest common divisor of two (positive) numbers . Discovered in 1967 by the Israeli programmer Josef Stein, it’s an alternative to the classical Euclid’s Algorithm, and is considered to be more efficient than this as it’s replacing divisions and multiplications with bitwise operations . The algorithm is recursive by nature, but loops can be used instead of recursion .

Note that by B_GCD(num1, num2) we will refer to a function that returns the greatest common divisor of two positive numbers (num1 and num2).

Rules of the algorithm:

  1. B_GCD(0,0) is not defined, but for convenience we will consider it 0;
  2. B_GCD(num1,0) = num1 and B_GCD(0,num2) = num2;
  3. If num1 and num2 are even, B_GCD(num1, num2) = 2 * B_GCD(num1/2, num2/2), as 2 is a common divisor
  4. If num1 is even and num2 is odd, B_GCD(num1, num2) = B_GCD(num1 /2, num2), as 2 is not a common divisor . The steps are the same if num1 is odd and num2 is even : B_GCD(num1, num2) = B_GCD(num1, num2/2)
  5. If both num1 and num2 are odd, then:
    • if num1 >= num2 -> B_GCD(num1, num2) = B_GCD((num1-num2)/2, num2)
    • else B_GCD(num1, num2) = B_GCD((num2-num1)/2, num1)
  6. Step 4 and 5 are repeated until num1 = num2, or num1 = 0

We can also use pseudo code to describe the above algorithm.

Recursive Version of Binary GCD (Stein Algorithm):

FUNCTION  B_GCD(num1, num2)
	IF num1 = num2 THEN
		RETURN num1
	IF num1 = 0 AND num2 = 0 THEN
		RETURN 0
	IF num1 = 0 THEN
		RETURN num2
	IF num2 = 0 THEN
		RETURN num1
	IF num1 IS EVEN AND num2 IS EVEN THEN
		RETURN (B_GCD(num1/2, num2/2) * 2)
	IF num1 IS EVEN AND num2 IS ODD THEN
		RETURN B_GCD(num1/2, num2)
	IF num1 IS ODD AND num2 IS EVEN THEN
		RETURN B_GCD(num1, num2/2)
	IF num1 IS ODD AND num2 IS ODD THEN
		IF num1 >= num2 THEN
			RETURN B_GCD((num1-num2)/2, num2)
		ELSE
			RETURN B_GCD((num2-num1)/2, num1)

The loop-version of the Binary GCD Algorithm

FUNCTION B_GCD(num1, num2)
	power_of_two := 0
	IF (num1 = 0 OR num2 = 0) THEN
		RETURN num1 | num2
	WHILE ((num1 IS EVEN) AND (num2 IS EVEN))
		num1 := num1 / 2
		num2 := num2 / 2
		power_of_two := power_of_two + 1
	DO
		WHILE(num1 IS EVEN)
			num1 := num1 / 2
		WHILE(num2 IS EVEN)
			num2 := num2 / 2
		IF (num1 >= num2) THEN
			num1 := (num1 - num2) / 2
		ELSE
			tmp  := num1
			num1 := (num2 - num1) / 2
			num2 := tmp
	WHILE NOT ((num1 = num2) OR (num1 = 0))
	RETURN num2 * power_of_two

Implementation in C

The code is available in this github repo:

gh repo clone nomemory/blog-stein-algorithm-c

Recursive Version of Binary GCD (Stein Algorithm):

#include <stdio.h>

/**
* Stein's Algorithm .
* @author Andrei Ciobanu
* @date DEC 12, 2010
*/

int b_gcd(int num1, int num2)
{
	if (num1 == num2) {
		return (num1);
	}
	if (!num1 && !num2) {
		/* Convention: GCD(0, 0) = 0 */
		return (0);
	}
	if (!num1 || !num2) {
		// GCD(0, num2) = num2 
		// GCD(num1, 0) = num1
		return (num1 | num2);
	}
	if ( !(num1 & 1) && !(num2 & 1)) {
		// num1 and num2 are even, 
		// then gcd(num1, num2) = 2 * gcd(num1/2, num2/2)
		return (b_gcd(num1 >> 1, num2 >> 1) << 1);
	}
	if ( !(num1 & 1) && (num2 & 1)) {
		// num1 is even, and num2 is odd 
		// then gcd(num1, num2) = gcd(num1/2, num2)
		return b_gcd(num1 >> 1, num2);
	}
	if ( (num1 & 1) && !(num2 & 1)) {
		// num1 is odd, and num2 is even
		// then gcd(num1, num2) = gcd(num1, num2/2)
		return b_gcd(num1, num2 >> 1);
	}
	if ( (num1 & 1) && (num2 & 1)) {
		// num1 and num2 are odd
		if(num1 >= num2) {
			return b_gcd((num1 - num2) >> 1, num1);
		}
		else {
			return b_gcd((num2 - num1) >> 1, num1);
		}
	}
	return (0);
}

int main(int argc, char *argv[])
{
	printf("%dn", b_gcd(9 * 16, 3 * 32));
	return (0);
} 

The loop-version of the Binary GCD Algorithm:

#include <stdio.h> 

/**
* Stein's Algorithm .
* @author Andrei Ciobanu
* @date DEC 12, 2010
*/

int b_gcd(int num1, int num2)
{
	int pof2, tmp;
	if (!num1 || !num2) {
		return (num1 | num2);
	}

	// pof2 is the greatest power of 2 deviding both numbers .
	// We will use pof2 to multiply the returning number .
	pof2 = 0;
	while(!(num1 & 1) && !(num2 & 1)) {
		// gcd(even1, even1) = pof2 * gcd(even1/pof2, even2/pof2)
		num1 >>=1;
		num2 >>=1;
		pof2++;
	}

	do {
		while (!(num1 & 1)) {
			num1 >>=1;
		}
		while (!(num2 & 1)) {
			num2 >>=1;
		}
		// At this point we know for sure that
		// num1 and num2 are odd
		if (num1 >= num2) {
			num1 = (num1 - num2) >> 1;
		}
		else {
			tmp = num1;
			num1 = (num2 - num1) >> 1;
			num2 = tmp;
		}
	} while (!(num1 == num2 || num1 == 0));

	return (num2 << pof2);
}

int main(int argc, char *argv[])
{
	printf("%d", b_gcd(9 * 16, 3 * 32));
	return (0);
}

If both cases the output is 48, and if you look closely, in both cases we’ve used bitwise operations instead of the standard multiplication / division operators .

Note:

If you are interested in the classical Euclid’s Algorithm (for finding the greatest common divisor) + pseudocode and implementation please read this article: Euclid’s Algorithm .

Updated:

Comments